Insecticides play an important role in increasing production by protecting crops from destructive insect pests. However, the indiscriminate use of conventional and broad spectrum insecticides leads to the development of resistance, resurgence and environmental pollution. Therefore, it is necessary to select new, safe and less persistent products for eco-friendly and sustainable pest management. Benzophenyl urea based insecticides fit well in this aspect. These are basically inhibitors of the chitin synthesis in insects which make them strong candidates for the integrated pest management. Extensive research has been carried out on different aspects to assess the potentiality and environment friendliness of this group of insecticides. Thus, the aim of this review is to gather comprehensive information about benzophenyl urea insecticides related to its development, mode of action, bio-efficacy, environmental fate and eco-toxicity, which may be helpful for the researchers for future endeavours.

Key words: Benzophenyl urea, Chitin, Insecticide, Pest control, Toxicity
Introduction

Research has been advanced during the last few years in search of novel compounds which can act as potent insecticides as the existing molecules (organophosphate, organochlorine, carbamate) were showing serious threats to the beneficial organisms, disturbing ecological balance. There was increasing demand for eco-friendly and target-specific insecticides that do not harm beneficial and non-target living organisms (Horowitz and Ishaaya, 2004, Bhattacharyya et al., 2009). As a result, new chemistry compounds (e.g. thiamethoxam, flubendiamide, pyridalyl etc.) have been synthesized which are specific in action and safer than traditional ones towards natural enemies (Patra et al., 2017, 2018; Barik et al., 2010), thus new generation pesticides become vital component of Integrated Pest Management (IPM) programs (Casida and Quistad, 1998; Patra and Samanta, 2017, 2018).

Insect’s chitin plays an important role in its growth, development and reproduction. Previously, a considerable number of chemically different group of insecticides were developed to inhibit the chitin synthesis (Muthukrishnan et al., 2012). In order to inhibit biosynthesis of chitin, these products often cause unsuccessful molting and egg laying resulting into deformed cuticle. Moreover, some compounds have also shown to affect formation of peritrophic matrix and its function in the insect’s intestine. Peritrophic matrix also plays an important role by providing a protective shield against attack by microorganisms in the insect’s midgut (Hegedus et al., 2009). Brief information about chitin and its formation can give some clues about how the idea of this insect control was evolved.

Chitin and its synthesis in insects: Chitin is basically a polymer of monosaccharide called N-acetylglucosamine linked by β-(1-4)-glycosidic bonds. It forms microfibrils of about 20 sugar chains that act as building blocks of insect cuticle. Chitin hydrolysis, in the presence of chitinase enzyme, produces glucosamine along with N-acetylglucosamine that shows the co-existence of former in the polymer unit. Although, NMR analysis of cuticle present in tobacco hornworm did not show the presence of glucosamine (Kramer et al., 1998). As confirmed by X-Ray Diffraction analysis, chitin is mainly divided into three types, viz. α, β and γ chitin. In these forms, α chitin is predominantly found in chitinous cuticle where rests two are prevalent in cocoons (Kennington, 1976; Peters, 1992). The major differences among these forms lie in the extent of hydration, unit cell size and chitin chain number in unit cell.

Chitin is synthesized both in the epidermis and midgut of the insect. Inside the cuticle, chitin mainly exists as prochitone as compared to exocuticle, however, it is not found in epicuticle. Chitin is also an important part of peritrophic matrix (gut lining). Actual process involved in biosynthesis of chitin in insect is not so clear and apparently involves several genes (Fig. 1). The enzyme highly responsible for synthesis of chitin is chitin synthases (UDP-N-acetyl-glucosamine: chitin 4-β-Nacetylglucosaminyltransferase; EC 2.4.1.16) (Merzendorfer and Zimoch, 2003), which is difficult to assay. However, this biosynthetic pathway is considered almost similar to the Leloir pathway in microbes. The preliminary sugar required for chitin synthesis is fat body glycogen and the entire pathway can be subdivided into three parts. The first part sets of the reactions to form amino sugar GlcNAc. The second part involves reactions that produce UDP-GlcNAc. The third includes the formation of polymeric chitin (Muthukrishnan et al., 2012). Any alteration in the bio-synthetic pathway by the foreign particle can inhibit chitin synthesis in insects and can cause lethal effects.

Benzophenyl urea insecticides–potent chitin synthesis inhibitor: Among the chitin synthesis inhibitors, the important compounds are benzophenylureas (BPU). These are potent insecticides which regulate the growth of insects in somewhat negative way so that they can be controlled before causing any harm. Insect’s endocuticle gets affected and loses its elasticity when exposed of these insecticides. BPU are very selective in action and can be an important component of any IPM schedule. As higher animal and plants do not have chitin in their body structure, these BPU are relatively safe to them. The global market share of BPU insecticides was reported as 3.6% in 2011 (Sun et al., 2015) and the trend is increasing. In India, several compounds are registered by Central Insecticide Board & Registration Committee for use in agriculture, household and for public health as well (Table 1). These are very stable in crop environment and exert reproducible results in insects. Another advantage of using BPU is that it has broad application because insects take longer time to molt (Table 2).

Development of benzophenyl urea insecticides: N-benzoyl-N-phenyl urea have been found as basic moiety for potent chitin biosynthesis inhibitor (Post et al., 1974), which causes unusual endocuticular deposition that leads to unsuccessful molting (Mulder and Gijswijt, 1973). Till date, almost 15 BPU insecticides (Fig. 2) have been commercialized after extensive research. Discovery of first commercial BPU insecticide, diflubenzuron, was carried out in an unplanned way. With the invention of powerful herbicides diuron and dichlobenil, a metabolite (DU19111), 1-(2,6-dichlorobenzoyl)-3-(3,4-dichlorophenyl)-urea, was synthesized, however, the compound showed insecticidal activity rather than possessing herbicidal action. This led to the synthesis of diflubenzuron, as an analogue of Du19111.

Besides agricultural use, this insecticide plays an important role in public hygiene as it is widely used for controlling mosquitoes in Europe where neurotoxins are prohibited for use in mosquito breeding centre (Douris et al., 2016). After the discovery of diflubenzuron, three more products namely chlorbenzuron, dichlorbenzuron and penfluron had been developed with increased larvicidal action (Sun et al., 2015). With a requirement for more potent and stronger BPs, scientists have discovered chlorine and/or fluorine derivatives of BPs, such as teflubenzuron (Clarke and Jewess, 1990). Another breakthrough had been made when researchers invented the compound triflumuron. It is considered as the second generation BPU.
insecticide, which is more potent ovicide and larvicide as compared to diflubenzuron. In the following years, a number of compounds like hexaflumuron as termiticide, novaluron, lufenuron, noviflumuron and bistrifluron have been identified and synthesized as powerful larvicides. Hexaflumuron (Kombias and Hunter, 1986), lufenuron (Schenker and Moyses, 1994), novaluron (Ishaaya et al., 1996) and noviflumuron (Sbragia et al., 1998), containing α-fluoroalkoxy residue in the para position, are insecticides, especially very active against hymenoptera. They are more effective against different harmful insect pests as compared to diflubenzuron (Ishaaya, 1990). Bistrifluron is active against whitefly and lepidopteran insects (Kim et al., 2000). Being non-toxic to vertebrates, triflumuron, hexaflumuron and lufenuron have wide application as veterinary as well as household insecticides to control animal and human pests such as fleas, mosquitos, ticks and cockroaches (Krämer and Schirmer, 2007). Effectiveness of lufenuron against okra shoot and fruit borer (Patra et al., 2007) and brinjal shoot and fruit borer (Patra et al., 2009) have been documented in several literatures. Investigation for third generation BPU insecticides has resulted in discovery of flufenoxuron.

This compound has an excellent control on eggs and nymphs of spider mites as well as larvae of some insect pests (Anderson et al., 1986). These third generation BPU insecticides have shown increased topical activity as well as broad spectrum control. Flucycloxuron, the first BPU that controls rust mites (Schelt et al., 1988), was invented by Philip-Duphar B.V. Another compound, chlorfluazuron introduced in the market for

Fig. 1: Chitin biosynthetic pathway in insect (Merzendorfer and Zimoch, 2003).
controlling chewing insect, diamondback moth (*Plutella xylostella*), thrips and other pests on vegetables (Neumann and Guyer, 1987). This insecticide can also be applied on fruit and plantation crops. Recently, few BPUs are merged with photoswitchable azobenzene that would cause photoresponsive inhibition in chitin synthesis. The preparation can be activated upon irradiation with UV source and can show 2-fold and 6-fold increased activity against sulfonylurea receptors of German cockroach (*Blattella germanica*) and armyworm (*Mythimna separata*), respectively. It can open new avenues for the spatio-temporal management of harmful lepidopterans (Tian et al., 2017).

Mode of action and potency in pest management: BPUs insecticides can selectively affect insect’s larval stage by interrupting the molting process (Mulder and Gijswijt, 1973; Ishaaya and Casida, 1974). Upon ingestion, they produce toxic effects in the insects; even some compounds can suppress fecundity and can act as potent ovicide (Ishaaya and Horowitz,
Online Copy

Fig. 3: General structure of N-benzoyl-N'-phenyl ureas (BPUs).

1998). It has been reported that diflubenzuron can significantly alter the composition of cuticle that is made of chitin-thus reducing the firmness and plasticity of insect’s endocuticle (Grosscott, 1978; Grosscott and Anderson, 1980). The decreased level of chitin in the insect’s cuticle is a strong evidence of inhibition of chitin bio-synthesis (Post et al., 1974; Ishaya and Casida, 1974; Hajjar and Casida, 1979; Van Eck, 1979). Chitin synthesis is not a mandatory site for inhibiting this synthesis as found in different studies. This theory is supported by the fact that BPU insecticides does not inhibit this enzyme externally (cell-free systems) (Cohen and Casida, 1980; Mayer et al., 1981; Cohen, 1985).

Some studies indicate that there is a chance for BPU insecticides to affect insect’s hormones, thereby disturbing the vital physiological processes like DNA synthesis (Mitlin et al., 1977; DeLoach et al., 1981; Soltani et al., 1984), phenoloxidase and carboxydrase activities (Ishaya and Casida, 1974; Ishaya and Asher, 1977), or inhibit microsomal oxidase activity (Van Eck, 1979). Moreover, researchers have identified that BPU compounds can restrict incorporation of 20E-dependent GlcNAc chitin content which ultimately alters the structure and functions of insects, which produces chitin at the time of molting (Ghanim and Ishaaya, 2010). Moreover, benzophenyl ureas inhibit peritrophic matrix formation, which safeguards the midgut epithelium from several harmful agents (Soltani et al., 1984; Clarke et al., 1977; Becker, 1978). This inhibition can be correlated with the reduction in chitin content which ultimately alters the structure and functions of insect’s cuticle (Post et al., 1974; Van Eck, 1979; Hajjar and Casida, 1978). Moreover, the bio-potency of compound depends mainly on the basic structural moiety of itself.

Structure Activity Relationships (SAR): In earlier stages of research, there was little scope to modify the substituents at N-benzoyl moiety (Fig. 3) for improved activity. Substitution at ortho position can only make the compound insecticidally active. This substituent (R) can be CH₃, OC₃H₇, or OCF₃ to retain the potency of compound. But, practically, all commercialized compounds have ortho-halogen substitution and the order of insecticidal activity can be depicted as (Hal, R): 2-F, 3-F, 5-F > 2,6-Cl > 2,6-Cl₂ > 2,4-Cl₂ > 2,6-Cl₃ > 2,6-Cl₄ > 2,6-Cl₃Cl > 2,6-Cl₃Cl₂ > 2,6-Cl₃Cl₃ > 2,6-Cl₄Cl > 2,6-Cl₅Cl > 2,6-Cl₆Cl > 2,6-Cl₃Cl₂Cl > 2,6-Cl₃Cl₂Cl₂.

In case of N'-arylamino moiety, the scope of substitution is usually broadened. However, SAR studies have demonstrated that substitution with electron-withdrawing groups like halogen, haloenoalkyl, α-fluoroalkoxy or halogenated pyridin-2-yl can produce optimum effects. Generally, fluorine occupies the para position of the moiety of these BPU s to get additional stability and extended spectrum of use (especially mites). Some fluorinated substituents like F, Cl, F, C₂F₂O, F₃C, F₂H₂F FO, C₂F₅O are mainly found as substituents (Krämer and Schirmer, 2007). So far the
benzophenyl urea insecticides are commercialized, the only compound is triflumuron which is not typically 2,6-difluoro substituted (Hammann and Sirrenberg, 1980). It has been found beneficial when pseudohalogenic trifluromethoxy group is attached to the 4-position of N′-arylamino moiety as it results into stronger insecticidal action coupled with a pronounced feeding
Table 2: Activity spectrum of some important BPU insecticides (Merzendorfer, 2013)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Target pests</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diflubenzuron</td>
<td>Highly effective in controlling holometabolous pests. Excellent control against lepidopteran larvae such as tobacco caterpillar, bollworm etc. Can control of maggots of fly and mosquito.</td>
<td>Not so effective against mites (Peleg and Gothilf, 1981) and aphids (Mulder and Gijswijt, 1973).</td>
</tr>
<tr>
<td>Triflumuron</td>
<td>Can control wide range of insects like flea larvae, mosquito, lice, silverfish, cockroach etc.</td>
<td>Can moderately control soft bodied scale insects (Darvas, 1997).</td>
</tr>
<tr>
<td>Chlorfluazuron</td>
<td>Highly effective against lepidopteran larvae like diamond back moth, tobacco caterpillar, bollworm etc.</td>
<td>Found some action against aphids (Ammar et al., 1986).</td>
</tr>
<tr>
<td>Teflubenzuron</td>
<td>Effective against caterpillars, white fly, leaf miner, beetles etc.</td>
<td>Found some action against soft scales (Eisa et al., 1991).</td>
</tr>
<tr>
<td>Hexaflumuron</td>
<td>Active against homopteran insects</td>
<td>Can act as potent termicide (Sajap et al., 2000).</td>
</tr>
<tr>
<td>Novaluron</td>
<td>Highly effective against American bollworm, diamond back moth, fruit borer, tobacco caterpillar etc.</td>
<td>Having rain fastness property, can be effective against Aedes aegypti (Farneai et al., 2012).</td>
</tr>
<tr>
<td>Lufenuron</td>
<td>Exclusive control of phytophagous mites</td>
<td>Makes Nuclear Polyhedrosis Virus (NPV) ineffective in silkworm (Arakawa et al., 2002).</td>
</tr>
</tbody>
</table>

Table 3: Environmental fate of some BPU insecticides (Lewis et al., 2016)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Soil degradation DT<sub>50</sub> (d)</th>
<th>Aqueous photolysis DT<sub>50</sub> (d) at pH 7</th>
<th>Aqueous hydrolysis DT<sub>50</sub> (d) at 20°C and pH 7</th>
<th>Soil adsorption and mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diflubenzuron</td>
<td>3 (non-persistent)</td>
<td>80 (stable)</td>
<td>96 (moderately persistent)</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Triflumuron</td>
<td>22 (non-persistent)</td>
<td>32.8 (stable)</td>
<td>Stable</td>
<td>No to slightly mobile</td>
</tr>
<tr>
<td>Teflubenzuron</td>
<td>92 (moderately persistent)</td>
<td>10 (moderately fast)</td>
<td>Stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Flucycoxuron</td>
<td>208 (persistent)</td>
<td>18 (slow)</td>
<td>28 (non-persistent)</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Chlorfluazuron</td>
<td>90 (moderately persistent)</td>
<td>stable</td>
<td>Stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Hexaflumuron</td>
<td>57 (moderately persistent)</td>
<td>6.3 (moderately fast)</td>
<td>Stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Lufenuron</td>
<td>16.3 (non-persistent)</td>
<td>0.5 (fast)</td>
<td>Stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Novaluron</td>
<td>72 (moderately persistent)</td>
<td>stableis</td>
<td>Stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Noviflumuron</td>
<td>250 (persistent)</td>
<td>-</td>
<td>Stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Bistrifluron</td>
<td>80.5 (moderately persistent)</td>
<td>10 (moderately fast)</td>
<td>stable</td>
<td>Non mobile</td>
</tr>
<tr>
<td>Flufenoxuron</td>
<td>42 (moderately persistent)</td>
<td>6 (moderately fast)</td>
<td>267 (persistent)</td>
<td>Non-mobile</td>
</tr>
</tbody>
</table>
were extracted using acetone followed by partitioning with mixture of dichloromethane and petroleum ether. LC separations were performed on a reversed-phase column, with acetonitrile-water gradient as mobile phase. Compounds were detected at 260 nm in photo diode array detector, with producing full spectra for further confirmation. Recovery and repeatability studies were performed at single spiking level for all the compounds, except flucycloxuron. The detection limits varied from 20 to 50 µg kg\(^{-1}\) for all the compounds examined irrespective of the matrices. A GC-MS based method was also documented to confirm BPU residues and their metabolites using ion-trap detector. Another HPLC based method has been developed to analyse few BPU molecules such as diflubenzuron, teflubenzuron, triflumuron, flufenoxuron and lufenuron in the samples of grape and processed wine (Miliadis et al., 1999). Solid phase extraction has been carried out using silica sorbent to clean up the sample after extraction with ethyl acetate. The detection was done in UV Photo Diode Array (PDA) and the recovery of the method was quite satisfactory.

A multi-residue analysis method was developed to detect 17 pesticides including some BPUs (methabenzthiazuron, inabenfide, diclomezine, dimethomorph, cumyluron, acibenzolar-S-methyl, diamuron, diflubenzuron, tebufenozide, etobenzanid, hexaflumuron, penicycuron, teflubenzuron, lufenuron, pentoxazone, flufenoxuron, chlorfuazuron) in various agricultural commodities were detected by using LC/MS. The method was standardized for different matrices like rice, potato and orange by spiking the compounds at 0.1µg g\(^{-1}\) level. The samples were subjected to solvent extraction using acetonitrile followed by clean-up with primary and secondary amine (PSA) sorbent and elution with mixture of acetone and hexane (1:1) as eluting solvent. Compounds were detected using atmospheric pressure chemical ionization (APCI) techniques enabled with both positive and negative ion modes in the mass spectrometer (Okihashi et al., 2002). The method was validated with acceptable accuracy and precision as the mean recoveries of the compounds usually ranged between 70 to 98% and the relative standard deviations (RSD) values were usually around 10% irrespective of the

Table 4: Eco-toxicological information about few BPU insecticides (Lewis et al., 2016)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Bio-concentration factor (l kg(^{-1}))</th>
<th>Mammals-Acute oral LD(_{50}) (mg kg(^{-1}))</th>
<th>Birds-Acute LD(_{50}) (mg kg(^{-1}))</th>
<th>Fish-Acute 96 h LC(_{50}) (mg l(^{-1}))</th>
<th>Aquatic invertibrates 48 hour EC(_{50}) (mg l(^{-1}))</th>
<th>Aquatic plants-Acute 72 hour EC(_{50}) (mg l(^{-1}))</th>
<th>Algae-Acute 48 hour EC(_{50}) (mg l(^{-1}))</th>
<th>Honeybee Oral acute LD(_{50}) (µg bee(^{-1}))</th>
<th>Earthworms-Acute 14 day LC(_{50}) (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diflubenzuron</td>
<td>320 (threshold for concern)</td>
<td>>4640 (low)</td>
<td>>5000 (low)</td>
<td>>0.13 (moderate)</td>
<td>0.0026 (high)</td>
<td>>0.19 (moderate)</td>
<td>20 (low)</td>
<td>>9.1 (moderate)</td>
<td>>500 (moderate)</td>
</tr>
<tr>
<td>Triflumuron</td>
<td>612 (threshold for concern)</td>
<td>>5000 (moderate)</td>
<td>561 (low)</td>
<td>>0.021 (high)</td>
<td>0.0016 (high)</td>
<td>-</td>
<td>>0.025 (moderate)</td>
<td>>226 (low)</td>
<td>>500 (moderate)</td>
</tr>
<tr>
<td>Teflubenzuron</td>
<td>640 (threshold for concern)</td>
<td>>5038 (low)</td>
<td>>2250 (low)</td>
<td>>0.0065 (high)</td>
<td>0.0028 (high)</td>
<td>-</td>
<td>>0.02 (moderate)</td>
<td>72 (low)</td>
<td>>500 (moderate)</td>
</tr>
<tr>
<td>Flucycloxuron</td>
<td></td>
<td>>5000 (low)</td>
<td>>2000 (moderate)</td>
<td>>100 (moderate)</td>
<td>>0.0002 (high)</td>
<td>-</td>
<td>>0.002 (moderate)</td>
<td>-</td>
<td>1000 (moderate)</td>
</tr>
<tr>
<td>Chlorfluazuron</td>
<td></td>
<td>>8500 (low)</td>
<td>>2510 (low)</td>
<td>>300 (low)</td>
<td>0.000908 (high)</td>
<td>-</td>
<td>-</td>
<td>>100 (low)</td>
<td>>1000 (moderate)</td>
</tr>
<tr>
<td>Hexaflumuron</td>
<td>4700 (threshold for concern)</td>
<td>>5000 (low)</td>
<td>2000 (low)</td>
<td>100 (low)</td>
<td>0.0001 (high)</td>
<td>-</td>
<td>-</td>
<td>3.2 (low)</td>
<td>>17 (low)</td>
</tr>
<tr>
<td>Lufenuron</td>
<td>5300 (high potential)</td>
<td>>2000 (moderate)</td>
<td>>29 (moderate)</td>
<td>2000 (low)</td>
<td>0.0013 (moderate)</td>
<td>-</td>
<td>-</td>
<td>8.8 (moderate)</td>
<td>>197 (low)</td>
</tr>
<tr>
<td>Novaluron</td>
<td>2091 (threshold for concern)</td>
<td>>5000 (low)</td>
<td>>2000 (moderate)</td>
<td>>1.0 (moderate)</td>
<td>0.058 (moderate)</td>
<td>0.075 (moderate)</td>
<td>9.68 (moderate)</td>
<td>>100 (low)</td>
<td>>1000 (low)</td>
</tr>
<tr>
<td>Noviflumuron</td>
<td></td>
<td>>5000 (low)</td>
<td>>2000 (low)</td>
<td>1.8 (low)</td>
<td>3.11 (low)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>10000 (low)</td>
</tr>
<tr>
<td>Bistrifluron</td>
<td>2414 (threshold for concern)</td>
<td>>5000 (low)</td>
<td>>2250 (low)</td>
<td>>0.5 (moderate)</td>
<td>0.0006 (moderate)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>10000 (low)</td>
</tr>
<tr>
<td>Fluazuron</td>
<td></td>
<td>>5000 (moderate)</td>
<td>>2000 (low)</td>
<td>126.8 (low)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>1000 (moderate)</td>
</tr>
<tr>
<td>Chlorbenzuron</td>
<td></td>
<td>>10000 (low)</td>
<td>>5000 (low)</td>
<td>15 (low)</td>
<td>27.9 (low)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>10000 (low)</td>
</tr>
<tr>
<td>Flufenoxuron</td>
<td>700500 (high potential)</td>
<td>>3000 (low)</td>
<td>>2000 (moderate)</td>
<td>>0.0049 (low)</td>
<td>0.000043 (moderate)</td>
<td>5.11 (high)</td>
<td>>109.1 (moderate)</td>
<td>>500 (moderate)</td>
<td></td>
</tr>
</tbody>
</table>
substrate. This finding has endorsed the suitability of the method to analyze trace levels of the pesticides in the selected matrices by using LC/MS with APCI.

In another experiment, LC system with Electro-Spray ionisation (ESI) in both positive and negative mode was used for evaluating degradation pathway of diflubenzuron and hexaflumuron in water samples (Yang et al., 2006). On the basis of product ion fragmentation pattern, authors confirmed the identity of both the analytes. The method developed was found accurate, precise, good linearity with lower detection limits. Recently, QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method is getting popularity in residue analysis for having several advantages over conventional methods (Lehotay, 2011). Analysts are frequently adopting this method with suitable modification. Likewise, a method was developed to determine chlorfluazuron residues in cabbage using HPLC enabled with PDA (Ganguly et al., 2017). Here, ChemElut (Agilent) sorbent was used to separate the analyte from the co-extractives. The LOD (limit of detection) and LOQ (Limit of Quantification) values were recorded as 0.05 and 0.10 μg g⁻¹ respectively. Here, analyte separation was achieved using a Chromatopak C18 column (250X4.6 mm; Peerless Basic) with mixture of methanol and water (95:5, v/v) solvent as mobile phase.

Environmental fate: By following different methods as mentioned above, scientists across the globe have been monitoring BPU residues in environmental substrates and several publications are available. Based on these findings, it can be concluded that BPUs are comparatively safer insecticides than the conventional organonitrogen and organophosphate. Most of these compounds show low to moderate persistency in environment (Table 3) (Lewis et al., 2016). Degradation of insecticides largely depends upon both biotic (micro & macroflora) and abiotic factors (soil, water, temperature, solar energy etc.). Any changes in these factors may cause wide variation in degradation pattern of the compounds. For example, chlorfluazuron is found to be dissipated at faster rate in alkaline pH as compared to acidic and neutral pH (Ganguly et al., 2016a). Half-life value of different BPU insecticides varies from days to months depending upon the chemical structure and exposure to the factors mentioned earlier. Likewise, degradation of diflubenzuron is very fast as compared to noviflumuron, which generally takes 250 days.

The major pathway for quick dissipation of diflubenzuron is mediated through biotic processes whereas noviflumuron strongly binds to the soil colloids, solubilize less in water resulting less degradable. In case of chlorfluazuron, the half-life values ranged between 12-26 days in different soils (Ganguly et al., 2016b). Upon degradation, these can produce toxic and non-toxic metabolites as well. For example, photo-degradation and hydrolysis of diflubenzuron may produce metabolites like 2,6-difluorobenzamide, 4-chloroaniline, N-methyl-4-chloroaniline and 4-chloroacetanilide, of which last three compounds are considered as mutagens (Rodríguez et al., 1999); Mobility in soil is very restricted for almost all the compounds.

Eco-toxicology: BPU insecticides, in general, are safe to mammals as of acute toxicity is concerned (Table 4) (Lewis et al., 2016). Because of these low toxicity levels and also for higher bio-potency, BPU insecticides are the automatic choices for IPM (Morais et al., 2011). These compounds can inhibit chitin formation in several orders of insect pests, but, do not possess any significant effects on the microbes and beneficial insects as well (Merzendorfer, 2013). But, in aquatic environment, the scenario is somewhat not so much encouraging. Bio-concentration is the process by which the concentration of a compound is increased within an aquatic organism for which the source is only water. Bio-concentration factor (I kg⁻¹) is at threshold limit almost for all BPU compounds except lufenuron where it exceeds the limit. Majority of the compounds show moderate to high acute toxicity to the fish and aquatic invertebrate. In case of honey bee and earthworm, most of the compounds have shown low to moderate toxicity except hexaflumuron which shows high toxicity towards honey bee.

BPU insecticides were developed and intended to affect biochemical sites that is present only in the target arthropods but not in non-target organisms. Based on these developments they are called “low risk” insecticides, showing less negative effect on the environment making them important element in IPM. Using as a partner with ‘knock down’ insecticides in tank mix, BPUs can control the pests more successfully. It is better to use BPUs 7-10 days after adulticide application when populations of adult insects are more in the field. Although BPUs insecticides provide greater benefits in crop protection, comparatively much safer than older molecules like organophosphates, carbamates etc., there are now growing concern that these molecules can negatively affect aquatic organisms. According to US EPA, diflubenzuron inhibits growth and reproduction of freshwater invertebrates, affecting their survival and also hampers the reproduction of marine/estuarine invertebrates (Anonymous, 1997). Investigation has been going on to find much safer, more potent benzoyl urea based molecules. But, for the time being, we need careful handling of existing molecules so as to avoid faulty application without leaving harmful residues in the environment.

Acknowledgement

We are thankful to Bihar Agricultural University, Sabour, Bhagalpur to provide us necessary support in formulating this manuscript.

References

Anderson, D.W. and R.H. Elliott: Efficacy of diflubenzuron against the
codling moth, Laspeyresza pomonella (Lepidoptera: Olethreutidae) and impact on orchard mites. Can. Entomol., 114, 733-737 (1982).

benzoylphenylurea insecticides in pome fruit and fruits

