Optimization of lovastatin production by *Fusarium nectrioides* (MH173849) using response surface methodology and fuzzy logic system

Authors Info
M. Senthilmarai and K.P. Kannan*
Department of Biotechnology, Banari Amman Institute of Technology, Sathyamangalam, Erode-638 401, India

Corresponding Author Email: drkpkannan@gmail.com

Abstract

Aim: To enhance the productivity of lovastatin from *Fusarium nectrioides* isolate with liquid cheese whey as a major carbon source and to optimize the media components using Response Surface Methodology (RSM) and Fuzzy Logic System (FLS).

Methodology: *Euphorbia hirta* was collected, surface sterilized and incubated on potato dextrose agar medium amended with ampicillin and streptomycin sulphate. *F. nectrioides* was isolated from *E. hirta* and identified using morphological and molecular methods. Primarily, media components were screened by Plackett Burman design (PBD). Further, the effect of significant nutrients was predicted using RSM and FLS and compared with experimental yield.

Results: Molecular identification by gene sequencing confirmed the isolate to be *F. nectrioides*, given an accession number (MH173849). The sequence was submitted in the gene bank. PBD revealed that peptonized milk (which is an enzymic digest of high grade skimmed milk powder), corn steep liquor, liquid cheese whey and histidine were significant variables. The optimum levels of these significant variables in different combinations were studied by RSM in which the predicted yield of lovastatin was 1.2 g l⁻¹. Further, it was analyzed by FLS with 14 set of fuzzy rules and the maximum production obtained was 1.8 g 100 ml⁻¹ which was closer to the experimental yield of 1.75 g 100 ml⁻¹. Therefore, compared to RSM, FLS was more suitable technique to determine the optimum levels of significant nutrients for enhanced lovastatin production.

Interpretation: This study suggests that *F. nectrioides* (MH173849) can be used as a potent producer of lovastatin and the production highly influenced by glucose, corn steep liquor, liquid cheese whey and histidine.

Key words: Cheese Liquid whey, *Euphorbia hirta*, *Fusarium nectrioides*, Fuzzy Logic system, Lovastatin
Introduction

Lovastatin is a potent anti-cholesterol compound and competitive inhibitor of 3 hydroxyl 3 methylglutaryl co-enzyme A reductase (HMG-CoA) which has a huge demand in the pharmaceutical and health sectors (Tandon et al., 2005; Alberts et al., 1980). It is also used to prevent stroke, reduce the development of peripheral vascular disease and treat bone fractures (Pahan, 2006). Due to its pleiotropic effects (Davies et al., 2016), it has received increasing recognition and clinical applicability across a broad range of cardiovascular and non-cardiovascular conditions, including Alzheimer’s, cancer, dementia, Parkinson’s, multiple sclerosis and rheumatoid arthritis (Davignon and Leiter, 2005). Owing to its significant importance in medicinal field, the cost effective production of lovastatin in large scale is highly solicited. Therefore, industries are seeking assistance of strong scientific technology and statistical tools for enhancing the production of Lovastatin (Seenivasan et al., 2008).

Lovastatin is a secondary metabolite produced during the exponential phase of selective endophytic fungi under optimal conditions. Isolating a potential endophytic fungi and designing a fermentation medium is crucial for the enhanced production of lovastatin (Hutchinson et al., 2000; Goswami et al., 2012). Lovastatin is produced from multiple genera and types of filamentous fungi, including Aspergillus, Penicillium, Monascus, Paecilomyces, Trichoderma, Scopulariopsis, Doratomyces, Phoma, Phythium, Gymnoascus, Hypomyces and Pleurotus (Casas López et al., 2003). Endophytic fungi from medicinal plants have gained greater attention due to their rich diversity (Pinruan et al., 2010) towards the production of secondary metabolites. The concentration of biomass and production of lovastatin mainly depends on selection of carbon sources (Dhar and Nigam, 2015; Goni et al., 2016; Boruta et al., 2017).

Liquid cheese whey is a yellowish liquid, remaining after milk coagulation during cheese production. It is a valuable byproduct of cheese industry and has huge commercial applications due its high lactose content and milk nutrients (Lievore et al., 2015). Although several efforts have been employed for the utilization of cheese whey, almost half of its global production is left untreated and is discarded as an effluent (Wang et al., 2017). Hence, in this study, liquid cheese whey has been used as a carbon source in addition to glucose for the growth of fungal species, Fusarium nictioides and significant nutrients have been optimized using RSM and FLS.

Materials and Methods

Collection of weed plants and surface sterilization of leaves: Healthy and matured leaves of a pantropical weed, Euphorbia hirta, were collected from in and around Sathyamangalamam region, Erode district, Tamil Nadu. Samples were collected in a sterile zip-lock bag and processed within 24 hrs at the Endophytic Fungal Research Laboratory, Bannari Amman Institute of Technology. Authentication of plant specimen was done at Botanical Survey of India, Tamil Nadu Agriculture University, Coimbatore. Fresh and healthy leaves of weed plants were washed thoroughly with sterile water to remove soil and debris from the leaf surface. The surface sterilized leaves were cut into 50 small segments of 0.5 cm x 0.5 cm using sterile scalpel and placed equidistantly on the freshly prepared Potato Dextrose Agar plates (PDA) amended with ampicillin (50 µg/ml) and streptomycin sulphate (250 µg/ml). The segments inoculated in PDA plates were incubated in fungal rack at 25°C ± 1°C provided with 12 hr of light followed by 12 hr of dark cycles till the colony appeared (Dobranic et al., 1995).

Isolation and identification of endophytic fungi: Individual colonies were isolated and subcultured subsequently to obtain pure culture. Endophytic fungi, F. nictioides was isolated and confirmed through morphological and molecular analysis (White et al., 1990) with forward primer (ITS-1F) TCCGAGGTGTA ACCTGCGG and reverse primer (ITS-4R) TCCTCCGCTT ATTGATATGC. The gene sequence of the same was submitted in gene bank to obtain accession number. Stock culture of F. nictioides was maintained on PDA incubated at 28°C for 7 days and stored under refrigeration at 5–10°C.

Growth media and culture conditions

Seed medium: Spore suspension of F. nictioides (MH173849) was inoculated in the seed media containing Glucose, Liquid cheese whey, Yeast extract, Magnesium sulphate at pH 6. The flask was incubated at 28°C for 40 hrs in a shaking incubator at 180 rpm (Sunei et al., 2003; Su et al., 2003).

Production medium: Grown seed culture (5x10^7 spore ml^-1) was transferred into the production medium comprising Glucose, Yeast extract, Potassium Di hydrogen Phosphatate, Peptonized milk, Magnesium sulphate, Histonide, Liquid cheese whey, at pH 6 in triplicates. All the flasks were incubated in shaker incubator at 28°C and 180 rpm for 15 days (Karthika et al., 2013; Hajjaj et al., 2001; Casas Lopez et al., 2003).

Extraction of lovastatin: After 12 days of fermentation, the culture broth was separated by filtration using sterilized filter cloth. The culture filtrate was adjusted from pH 6 to pH 2 and kept in a rotatory shaker with equal volume of ethyl acetate at 100 rpm for 2 hrs in room temperature. After the extraction process, the broth was separated from ethyl acetate using separating funnel and concentrated to 20 ml using rotatory evaporator. The presence of Lovastatin in the fermentation broth was confirmed by UV spectrometry at 238 nm. The extract obtained from the culture was analyzed using HPLC with C18 column as a stationary phase and acetonitrile and water (65:35 v/v) as mobile phase. An isocratic condition was maintained in the mobile phase.

The extract was filtered through 0.45 µm Millex-LH filter (Millipore corp., Bedford, MA 01730) and a clear extract (20 µl) was analyzed using high pressure liquid chromatography (Friedrich et al., 1995; Kyslik and Krej, 1993). The flow rate was maintained as 0.8 ml/min throughout the run and detection was carried out at...
238 nm. This was further compared with the retention time (5.124 min) of standard lovastatin.

Media optimization for batch fermentation of lovastatin: One factor at a time technique has short comings in locating the region of optimum response in the media optimization. To overcome this issue, Plackett Burman Experimental Design (PBD) is used to screen significant media nutrients (Plackett and Burman, 1946). This technique analyzes the impact of nine assigned factors such as glucose, yeast extract, peptonized milk, soya flour, potassium dihydrogen phosphate, magnesium sulphate, histidine, liquid cheese whey, corn steep liquor and two dummy variables such as

Table 1: High and low levels of factors used in Plackett–Burman Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Factors</th>
<th>Low level (-1)</th>
<th>High level (+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Glucose</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>Yeast extract</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>Peptized milk</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>D</td>
<td>Soya flour</td>
<td>3</td>
<td>5.8</td>
</tr>
<tr>
<td>E</td>
<td>Potassium Di hydrogen Phosphate</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Magnesium sulphate</td>
<td>0.05</td>
<td>0.8</td>
</tr>
<tr>
<td>G</td>
<td>Ferrous sulfate heptahydrate (DV1)</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>H</td>
<td>Histidine</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>I</td>
<td>Calcium chloride (DV2)</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>J</td>
<td>Liquid cheese whey</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>K</td>
<td>Corn steep liquor</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2: Twelve runs-Plackett-Burman design matrix for nine variables with coded values

<table>
<thead>
<tr>
<th>Run</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>30</td>
<td>28</td>
<td>5.8</td>
<td>2</td>
<td>0.05</td>
<td>0.04</td>
<td>4</td>
<td>0.04</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>30</td>
<td>28</td>
<td>3</td>
<td>2</td>
<td>0.8</td>
<td>0.2</td>
<td>4</td>
<td>0.04</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>25</td>
<td>28</td>
<td>5.8</td>
<td>0.3</td>
<td>0.8</td>
<td>0.2</td>
<td>7</td>
<td>0.04</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>5.8</td>
<td>2</td>
<td>0.05</td>
<td>0.2</td>
<td>7</td>
<td>0.2</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>25</td>
<td>28</td>
<td>3</td>
<td>2</td>
<td>0.8</td>
<td>0.04</td>
<td>7</td>
<td>0.2</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>25</td>
<td>28</td>
<td>5.8</td>
<td>0.3</td>
<td>0.05</td>
<td>0.2</td>
<td>4</td>
<td>0.2</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>25</td>
<td>15</td>
<td>5.8</td>
<td>3</td>
<td>0.05</td>
<td>0.2</td>
<td>7</td>
<td>0.04</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>30</td>
<td>28</td>
<td>3</td>
<td>0.3</td>
<td>0.05</td>
<td>0.04</td>
<td>7</td>
<td>0.2</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>30</td>
<td>15</td>
<td>3</td>
<td>0.3</td>
<td>0.8</td>
<td>0.2</td>
<td>4</td>
<td>0.2</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>5.8</td>
<td>0.3</td>
<td>0.8</td>
<td>0.04</td>
<td>7</td>
<td>0.04</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>25</td>
<td>15</td>
<td>5.8</td>
<td>2</td>
<td>0.8</td>
<td>0.04</td>
<td>4</td>
<td>0.2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>3</td>
<td>0.3</td>
<td>0.05</td>
<td>0.04</td>
<td>4</td>
<td>0.04</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3: Fourteen set of FUZZY rule and their crispy outputs

1. If (GLU is L) and (YE is HH) and (HIS HHH) and (LCW is LLLL) then (Productivity is LESS)
2. If (GLU is L) and (YE is LL) and (HIS HHH) and (LCW is HHHH) then (Productivity is LESS)
3. If (GLU is L) and (YE is LL) and (HIS LLL) and (LCW is HHHL) then (Productivity is LESS)
4. If (GLU is L) and (YE is HH) and (HIS HHH) and (LCW is HHLH) then (Productivity is MEDIUM)
5. If (GLU is L) and (YE is HH) and (HIS LLL) and (LCW is HLHL) then (Productivity is LESS)
6. If (GLU is L) and (YE is HH) and (HIS HHH) and (LCW is LLLL) then (Productivity is LESS)
7. If (GLU is H) and (YE is LL) and (HIS LLL) and (LCW is LLLL) then (Productivity is MEDIUM)
8. If (GLU is H) and (YE is HH) and (HIS HHH) and (LCW is LLLL) then (Productivity is MEDIUM)
9. If (GLU is H) and (YE is LL) and (HIS HHH) and (LCW is LLLL) then (Productivity is MEDIUM)
10. If (GLU is H) and (YE is LL) and (HIS HHH) and (LCW is HHHH) then (Productivity is HIGH)
11. If (GLU is M) and (YE is LL) and (HIS LLL) and (LCW is HHHH) then (Productivity is HIGH)
12. If (GLU is H) and (YE is HH) and (HIS MMM) and (LCW is LLLL) then (Productivity is MEDIUM)
13. If (GLU is H) and (YE is MM) and (HIS MMM) and (LCW is HHHH) then (Productivity is MEDIUM)
14. If (GLU is M) and (YE is LL) and (HIS MMM) and (LCW is MMMM) then (Productivity is MEDIUM)
ferrous sulfate heptahydrate and calcium chloride at a high level (coded +1) and low level (coded -1) (Table 1) for lovastatin production. Significant parameters were determined using Design Expert Version 8.0 software with 12 experimental designs (Table 2) (Box and Hunter 1957; Sayyad et al., 2007).

RSM AND Fuzzy inference system: The significant variables screened by PBD were optimized using RSM employing Central Composite Design (CCD). Their possible interaction and optimum operational conditions were analyzed by 25 runs of experiments. Significance of each component was determined by F-test and P-value. Probability level, P < 0.05 was considered to be statistically significant. The significant factors were also analyzed using FLS, where Fuzzy rule viewer constructed the system with 14 set of rules (Gupta et al., 2009) (Table 3) for determining optimum concentration of input variables (A, B, H and J) and output variables (Lovastatin production) (Honda and Kobayashi, 2000). The mamdani fuzzy inference system adjusts the membership functions to control the relation between input and output variables using MATLAB Version 7.3 (Fig. 1). It involves five subsequent steps from fuzzification to defuzzification where the crisp values of input variables (g l⁻¹) such
as glucose (0-100), yeast extract (0-30), histidine (0-7), LCW (0-25) were fuzzified into degree of membership with respect to fuzzy sets and finally extract a precise quantity out of the range of fuzzy set to output variable (Monton et al., 2013). Accuracy in the prediction ofLovastatin yield via RSM and Fuzzy logic system was compared.

Results and Discussion

F. nectrioides was isolated and its sequence was submitted in National Center for Biotechnology Information (NCBI) with accession number MH173849 (Fig. 2). The presence ofLovastatin in the fermentation broth was confirmed using HPLC with silica gel (60-120 mesh size) as a stationary phase in the column (300mm x18mm). Retention time of fermentation broth was 5.047 min, which was almost close to the retention time of standard Lovastatin (5.124 min) (Fig 3a, b). Increase in Lovastatin production was then analyzed further using RSM and FLS. Experiments conducted through PBD screened the media components, A to I and indicated that glucose (A), yeast extract (B), histidine (H) and liquid cheese whey (J) were most significant variables. The positive and negative effects of the media components are represented graphically in Pareto chart (Fig. 4) and their experimental yield is listed in Table 4.

The effect of these four significant variables A, B, H and J on the Lovastatin production was studied by RSM. To optimize the actual concentrations, CCD preceded further with 25 runs of experiments. All the experiments were done in 250ml Erlenmeyer flask containing 30 ml of media. The results were further analyzed statistically and interpreted with analysis of variance (ANOVA) in Table 5. Arulmathi and Elangovan (2016) reported that F- test with
a very low probability revealed high significance for the regression model. The model F-value of 15.24 implies that the model was significant (Table 5) and there was only 0.01% chance that a “Model F-Value” could occur due to noise. Values of “Prob > F” less than 0.0500 indicate that the model terms were significant. Luthra et al. (2015) also reported similar results. In this case glucose, yeast extract, histidine and liquid cheese whey were significant model terms where values greater than 0.1000 indicate that the model terms were not significant as reported by Pansuriya and Singhal (2010). The “Lack of fit F-value” of 2.24 implies that the curvature (as measured by difference between the average of the center points and the average of the factorial points) in the design space was not significant relative to noise. The R-square value and “AdjR-Square” value of this model was 0.9905 and 0.9479, which were higher than the reported values of Mouafi et al. (2016). Adequate precision measures the signal to noise ratio. This model can be used to navigate the design space. The optimum level of variables and interaction effects were found by 3D contour plots (Fig. 5) as mentioned by Luthra et al. (2015).

Graphical representation of response surface and contour plots determine the interaction effects of four significant factors on the response. Each of the actual response was compared with the predicted value. The predicted and the
observed results of Lovastatin yield were 1.2 g 100 mL⁻¹ and 1.75 g 100 mL⁻¹, whereas Karthika et al. (2013) reported the predicted and observed results of lovastatin yield such 0.034 g 100 mL⁻¹ and 0.036 g 100 mL⁻¹, respectively. Lovastatin obtained from *F. nectrioides* (MH173849) isolate had a good model fit due to high value of R^2. Thus, optimization of significant media components increased the Lovastatin production by *F. nectrioides* (MH173849).

The polynomial equation derived from multiple regression analysis is as follows:

$$
\text{Lovastatin Yield (Y) } = 0.575 + 0.075417 \times \text{Glucose} + 0.057083 \times \text{Yeast extract} + 0.019583 \times \text{Histidine} + 0.032083 \times \text{Liquid cheese whey} + 0.023125 \times \text{Glucose} + 0.045625 \times \text{Yeast extract} + 0.02625 \times \text{Liquid cheese whey} + 0.024375 \times \text{Yeast extract} + 0.036875 \times \text{Yeast extract} + 0.001875 \times \text{Histidine} + 0.09094 \times \text{Glucose} - 0.09219 \times \text{Yeast extract} - 0.07844 \times \text{Histidine} - 0.07219 \times \text{Liquid cheese whey} - 0.09094 \times \text{Glucose}$$

Ozlem et al. (2015) reported that Fuzzy rule viewer with different set of rules provided a crisp output for the numerical range of input variables as that of our output (Fig. 6). Surface plot for the effect of significant factors on Lovastatin production was constructed (Fig. 7, b) and is represented in Table 6. MATLAB ingrained fuzzy rule based system predicted the best combination and interaction of input variables and their predicted yield was compared with the theoretical yield. The surface plot of FLS between liquid cheese whey and glucose produced maximum Lovastatin of 1.8 g 100 mL⁻¹ compared to RSM (1.2 g 100 mL⁻¹). Thus, the predicted value of Lovastatin productivity by means of liquid cheese whey and glucose was found maximum and closer to the theoretical value.
Lovastatin produced from *F. nectrioides* was higher than those reported from *Aspergillus terreus* and *Rhizopus oryzae* (Rajkumar et al., 2018). Hence, from this investigation it was concluded that a novel strategy was adopted to enhance lovastatin production by new isolate, *F. nectrioides* utilizing industrial waste such as liquid cheese whey, as a cheap carbon source, with different combination of glucose, histidine and yeast extract. This is the first report to use liquid cheese whey and *F. nectrioides* for enhanced lovastatin production. RSM and Fuzzy models were utilized and, thus, the more accurate prediction was achieved by FUZZY models compared to RSM models.

Acknowledgments

The authors are thankful to the Chairman, Trustee, Principal and supervisor of Bannari Amman Institute of Technology,
Sathyamangalam, Erode District for providing all the necessary facilities and encouragement. Special thanks to Dr. A.K.S. Rawat, National Botanical Research Institute, Lucknow and Dr. Sogra FBA, Post-doctoral research associate, Texas A&M University for their constant guidance.

References

