A systematic survey on Anopheline species abundance, bionomics and habitat preference was conducted for three years in Thenzawl, Mizoram. A scoop–net method was employed for larval collection and a local made killing-jar for adults. A total of 10 species Anopheles campestris (25.8%), An. nivipes (24.0%), An. vagus (20.6%), An. jamesii (15.1%), An. jeyporiensis (11.4%), An. maculatus (1.7%), An. philippinensis (0.7%), An. annularis (0.26%), An. sinensis (0.23%) and An. peditaeniatus (0.22%) were collected. The survey site having thick tall grasses, numerous rural-huts as residents, small to relatively larger ponds and very slow running water bodies well shaded from sunlight with floating aquatic plants provided the largest area for Anophèles larvae breeding and accounted for 40% of all Anopheles larva and 25.4% total Anopheles spp. collected. An. campestris (NSK01), maculatus (NSK04), philippinensis (NSK06), nivipes (NSK10) and jeyporiensis (NSK09) were strongly anthropogenic and endophagic while vagus (NSK18) and jamesii (NSK03) were found to be highly zoophilic and exophilic and An. peditaeniatus (NSK02), annularis (NSK07) and sinensis (NSK15) were found to be highly zoophilic. Because of its abundance and bionomics, An. campestris, jeyporiensis and nivipes may have played a role in malarial transmission throughout the year. This is the first study reported on Anopheline distribution and abundance in Thenzawl, Mizoram.

Introduction

The Anopheles species is rich within the Oriental Region and occupies a wide variety of ecological niches (Foley et al., 2007). Very few information on Anopheline prevalence, geographical distribution and relative density of potential vector populations has been reported from Mizoram. Anopheline survey in Mizoram indicated the incrimination of Anopheles minimus and An. dirus as malarial vectors (Prakash et al., 2006). The survey carried out by Rita et al. (2009; 2013) reported the presence of An. philippinensis, An. subpictus, An. jamesii, An. varuna, An. jeyporiensis, An. vagus, An. maculatus, An. annularis, An. nivipes and An. minimus in Mizoram. Further, other Anopheles species have also been reported as incriminated vectors in Northeast India (Bhattacharyya et al., 2010; Sarma et al., 2012a,b).

The relative humidity, temperature and rainfall of the region was reported to have a strong effect on the breeding and survival of mosquito vector and extrinsic incubation period of malaria parasite; the r – value (correlation coefficient) for temperature vs. P. falciparum and rainfall vs. P. falciparum were found to be 0.55 and 0.76, respectively indicating strong relationship between climatic factors and malaria (Pahwa and Dhiman, 2011). Predicted transmission window of malaria by 2030 showed stability since the climatic characteristics make the region highly conducive for mosquito breeding, survival and transmission (Dhiman et al., 2011).

War against malaria had started since 1957 in Mizoram and the State Vector-Borne Diseases Control Programme (SVBDCP), funded by the World Bank, had been setting up Full Therapeutic Dose (FTD) in all towns and villages to help malaria patients get treatment on time. For vector control, the entire state had been targeted for two rounds of 1% DDT spray per annum (IRS) and distribution of 1% K-othrine® (2.5% deltamethrin w/w)
treated bed-nets (ITN) in rural areas (Anonymous, 2010).

Malaria is prevalent throughout the year in Thenzawl, and majority (99%) of the population suffered with malaria. However, mortality rate was quite low (0.15%), during the three year study, perhaps because of timely treatment (Anonymous, 2011). Further, implementation of the Anti-malaria Programme by SVBDCP since April 2010, reduced the malarial incidence to 74.77% (2009), 22.02% (2010) and to 3.21% (2011) (Anonymous, 2011).

The undertakings of the SVBDCP, Mizoram towards malarial eradication had solely focused only on the human treatment, IRS and ITNs. An effective and efficient surveillance system should also prioritize on the entomological component viz. Anopheles habitat and seasonal abundance, adult populations and the transmission of the vector - borne disease. In the present study, identification, habitat and abundance of Anopheles species within Thenzawl were carried out in relation to malarial prevalence.

Materials and Methods

Site, sampling and identification: Thenzawl is characterized by numerous slow-running low streams, concrete and earthen irrigational canals and drainage and ditches; and artificial ponds (2–9 m in diameter) which was used for harvesting fishes. Anopheles species habitats were surveyed within 2-4 km radius of the town (S1: human inhabitation with stream and water storage tanks; S2: forest reserve having ponds and natural vegetation; S3: Rural area with rock holes and natural vegetation; S4: Grassland ecosystem with pond; S5: Urban area with water canals; S6: Market area with piggery stands and water canals; S7: hospital area with drainage; S8: Jhum cultivation areas; S9: Fast flowing stream with natural vegetation; S10: Urban area with water storage tanks) from January to November for three years (2009 -2011) (Table 1). The larval habitats were characterized by clear water (5.0 – 6.2 pH; 22 – 30°C temperature) interrupted with floating aquatic plants and dead/fallen plant debris and were shaded by a vegetation of trees and tall grasses. Adults were collected at dusk and midnight (16:30 – 20:00 hrs; 12:00 – 4:00 hrs) from cattle sheds, nearby human residents and agricultural lands (23 – 36°C; 20 – 98% RH).

Larvae were collected by the scoop-net method, with larval net of a fine mesh net (10 x 10 finely knitted threads per cm²) mounted to an iron handle (30 cm diameter), plastic tub (28.5 cm diameter), a plastic dipper (15.5 cm diameter) and a dropper (Oo et al., 2004). Adults were collected using a CDC (Centers for Disease Control and Prevention) –light trap and local-made killing jar which consisted of a 250 ml glass jar (2 cm in diameter, 9.7 in length) and cotton moistened with chloroform, kept at the base of the jar. Each paralyzed/dead adult was immediately transferred to sterile 1.5 ml micro-centrifuge tube (Tarson) that contained silica-gel and cotton. Morphological identification of adult female was done based on the keys of palpi, wing and legs as described by Das et al. (1990) and Nagpal and Sharma (1987; 1995).

Statistical analysis: Statistical calculations were performed using commercially available GraphPad InStat version 3.06 software (GraphPad Software Inc., San Diego, CA) and PAST 1.86b (Hammer et al., 2001). One way ANOVA was used to compare species abundance and malarial prevalence. Levene’s test (based on means) was calculated to find the homogeneity of variances within Anopheles population. A p-value of < 0.05 was noted to have statistically significant value.

Results and Discussion

The present study revealed that the abundance of Anopheles species were slightly low in 2011 (32.4% of total Anopheles species) as compared to 2009 (34.2%) (Table 1; Fig. 1). There were no significant statistical differences in the total number of Anopheles collected in 2009 (F = 7.5; P = 2.717E-08), 2010 (F = 7.3; P = 3.943E-08), and 2011 (F = 7.5 P = 2.833E-08). Levene’s test (based on means) gave significant homogeneity of variances within the Anopheles populations W (2009) = 1.167E-15, W (2010) = 1.549E-13 and W (2011) = 1.38E-14. In the present survey, the most dominant species was An. campestris (NSK01) (25.8%) followed by An. nivipes (NSK10) (24.0%), An. vagus (NSK18) (20.6%), An. jamesii (NSK03) (15.1%), An. jeyporiensis (NSK09) (11.4%), An. maculatus (NSK04) (1.7%), An. philippinensis (NSK06) (0.7%), An. annularis (NSK07) (0.2%), An. sinensis (NSK15) (0.23%) and An. peditaeniatus (NSK02) (0.22%), respectively (Table 2).

The monthly proportion of total Anopheles collected gradually increased from February (2.8%), attained its maximum by May – June (21 – 23.1%) and gradually decreased by November (0.85%) (Table 2). The most consistent species throughout the year were An. campestris (NSK01) (Jan – 0.5%; Nov – 2.6%) and An. vagus (NSK18) (Jan – 0.8; Nov – 0.9%). An. campestris reached its maximum in June (20.6%) while the latter in May (27.7%). An. jamesii (NSK03) and An. nivipes began its prevalence in February (0.89% and 3.80%, respectively), rose to maximum during monsoon period (May - 34.0% and 22.2%, respectively) and receded in post-monsoon period (October - 1.6% and 0.5%, respectively). Similar pattern was observed by Malhotra (1994).

Maximum abundance of Anopheles species was observed during pre-monsoon and post-monsoon season (Aung et al., 1999), while for some species during monsoon season (Bansal and Singh, 1993). Amerasinghe et al. (1999) reported that rainfall affect Anopheles abundance significantly.

Very slow running water of temperature 24 -27°C, pH 5.2 -5.5, well shaded from sunlight, with aquatic vegetation coverage (riparian, floating, and emergent) provided the largest area for Anopheles larvae breeding and accounted for 40% of all
Table 1: Global positioning system, temperature and relative humidity of survey area with its Anopheles species distribution at Thanzawl, January – November, 2009 – 2011. + indicates presence and – indicates absence.

| Month | No. of sites surveyed | Spp. present/ site (%) | Total spp. collected | Mean of species collected | No of spp. for test | NSK01 | NSK02 | NSK03 | NSK04 | NSK06 | NSK07 | NSK10 | NSK15 | NSK09 | NSK18 |
|-------|-----------------------|------------------------|----------------------|--------------------------|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Jan | 10 | 3 | 77 | 7.7 ± 4.0 | 10 | 27 | - | - | - | - | - | - | 19 | 31 |
| Feb | 10 | 9 | 536 | 53.6 ± 22.8 | 10 | 80 | 4 | 26 | 10 | - | 2 | 177 | 2 | 187 | 68 |
| Mar | 10 | 10 | 1472 | 147.2 ± 50.2 | 10 | 283 | 3 | 146 | 24 | 4 | 4 | 380 | 3 | 286 | 339 |
| Apr | 10 | 10 | 2413 | 241.3 ± 86.2 | 10 | 483 | 6 | 307 | 36 | 10 | 6 | 759 | 5 | 287 | 514 |
| May | 10 | 10 | 4451 | 445.1 ± 157.5 | 10 | 1011 | 7 | 989 | 44 | 18 | 7 | 1034 | 7 | 312 | 1022 |
| Jun | 10 | 10 | 4068 | 406.8 ± 143.5 | 10 | 1025 | 7 | 671 | 54 | 33 | 9 | 1028 | 8 | 311 | 922 |
| Jul | 10 | 10 | 2697 | 269.7 ± 93.2 | 10 | 771 | 3 | 352 | 59 | 35 | 9 | 697 | 8 | 315 | 448 |
| Aug | 10 | 10 | 1867 | 186.7 ± 64.2 | 10 | 614 | 7 | 233 | 65 | 19 | 6 | 357 | 7 | 276 | 283 |
| Sep | 10 | 10 | 1089 | 108.9 ± 36.4 | 10 | 335 | 6 | 139 | 26 | 13 | 6 | 203 | 3 | 170 | 188 |
| Oct | 10 | 8 | 463 | 46.3 ± 23.9 | 10 | 236 | 0 | 47 | 4 | 5 | 2 | 21 | 1 | 31 | 116 |
| Nov | 10 | 2 | 164 | 16.4 ± 12.8 | 10 | 127 | - | - | - | - | - | - | - | 37 |
| | 10 | (20%) | 19297 | 19297 | 10 | (25.8%)| (0.22%)| (15.1%)| (1.7%) | (0.7%) | (0.26%)| (24.0%)| (0.23%)| (11.4%)| (20.6%)|
Anopheles species collected. Such habitat environment that favored larval density was also observed by Devi and Jauhari (2008); Minakawa et al. (2005); Stoops et al. (2007) and Mala et al. (2011). Adults were mainly collected from areas with ranging from 22.36°C and 20 – 98.0% relative humidity throughout the year. *An. campestris* (NSK01) (p>0.1), *An. maculatus* (NSK04) (p>0.1), *An. philippinensis* (NSK06) (p>0.1), *An. nivipes* (NSK10) (p>0.1) and *An. jeyporiensis* (NSK09) (p>0.1) were strongly anthropogenic and endophagic and could be collected more often indoors than outdoors, while *An. vagus* (NSK18) (p>0.1) and *An. jameisi* (NSK03) (p>0.1) were found to be highly zoophilic and exophilic and were mainly collected from outdoors. *An. peditaeniatus* (p>0.1), interestingly for *An. annularis* (NSK07) (p>0.1) and *An. sinensis* (NSK15) (p>0.01) were found to be highly zoophilic as they could be found only in indoor cattle-sheds.

Maximum collection of *Anopheles* species was observed in permanent ponds (site – 3; 25.4%) with vegetation followed by temporary ponds (site – 2; 10%), and least in shallow pits and seepages (site 8; 4.8%) (Table 2). Hence, distribution of *Anopheles* species was found to be non-random and predictable on the basis of habitat characteristics, thereby confirming the observations made by Stoops et al. (2007); Devi and Jauhari (2008) and Kenea et al. (2011).

Malaria was predominant throughout the year in Thenzawl. From the total monthly collections of *Anopheles* species from 2009 to 2011, *An. campestris* (NSK01), *An. nivipes* (NSK04) and *An. jeyporiensis* (NSK09) were found most dominant not only in all survey sites but also within the residential area of the malaria patients. During winter months (January and February), the population of *An. campestris* (NSK01) (0.54 – 1.21%) and *An. jeyporiensis* (NSK09) (0.87 – 8.52%) exhibited high abundance along with malarial prevalence (1.83 – 2.29%) of the total reported malaria cases (Fig. 2) (NRHM HMIS report, 2009; NVBDCP, 2010; Mizoram Health and Family Welfare Department, 2011). During the summer months (March, April and May), *An. campestris* (5.69, 9.7, and 20.3%, respectively), *An. nivipes* (8.16, 16.3 and 22.2%, respectively) and *An. jeyporiensis* (13.04, 13.08 and 14.22%, respectively) were high in population along with a slight increase in the incidence of malaria (1.38, 8.26 and 15.6%, respectively) (Figure 2). *An. campestris* (NSK01) surged to its maximum abundance of 20.62% during the commencement of monsoon month (June) with corresponding increase in the number of malaria cases (16.1%). Monsoon further prevailed during July and August and the number of *An. campestris* (15.5 and 12.35%), *An. nivipes* (NSK10) (14.97 and 7.67%) and *An. jeyporiensis* (NSK09) (14.36 and 12.58%) populations were high in correspondence with the malaria cases reported (26.1 and 15.1%), respectively. October and November witnessed the receding of monsoon and so were *An. nivipes* (0.45%) and *An. jeyporiensis* (1.41%) in October and disappeared by November. Meanwhile *An. campestris* prevailed with 4.75 and 2.55% by October and November together with malaria cases (3.67 and 1.83%).

Rise or decrease of temperature and rainfall can affect the density of Anopheline population (van den Hurk et al., 2000; Gilioli and Mariani, 2011; Imbahale et al., 2011). The three year study showed slight increase in temperature and annual rainfall with maximum of 25.3°C and 248.09 cm (2009) to 26.3°C and 330.45 cm (2011), respectively which favored slight increase in *An. maculatus* (NSK04) and *An. philippinensis* (NSK06) while *An. annularis* (NSK07), *An. nivipes* (NSK10) and *An. vagus* (NSK18) decreased. The environmental factors that influenced the proportion and abundance of *Anopheles* species as observed in the present study were the onset of monsoon rains (highly variable annually) and occasional cyclone (Kim et al., 2011); agricultural practices (Minakawa et al., 2005; Jacob et al., 2007;
Table 2: Global positioning system, temperature and relative humidity of survey area with its *Anopheles* species distribution at Thenzawl, January – November, 2009 – 2011. + indicates presence and – indicates absence.

<table>
<thead>
<tr>
<th>Survey Site</th>
<th>Coordinates</th>
<th>Temperature / RH</th>
<th>An. (A) campestris NSK 01</th>
<th>An. (A) peditaeniatus NSK 02</th>
<th>An. (C) jamesii NSK 03</th>
<th>An. (C) maculatus NSK 04</th>
<th>An. (C) philippinensis NSK 06</th>
<th>An. (C) annularis NSK 07</th>
<th>An. (C) nvipes NSK 10</th>
<th>An. (A) sinensis NSK 15</th>
<th>An. (C) jeyporiensis NSK 09</th>
<th>An. (C) vagus NSK 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>23°17’13.21"N 92°46’50.58"E</td>
<td>2449 ft</td>
<td>23 - 34°C</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S2</td>
<td>23°17’12.27"N 92°46’55.68"E</td>
<td>2506 ft</td>
<td>24 - 33°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S3</td>
<td>23°17’10.01"N 92°46’49.35"E</td>
<td>2547 ft</td>
<td>25 - 36°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>S4</td>
<td>23°16’51.98"N 92°46’49.64"E</td>
<td>2505 ft</td>
<td>26 - 32°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S5</td>
<td>23°16’47.49"N 92°46’29.01"E</td>
<td>2539 ft</td>
<td>27 - 32°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S6</td>
<td>23°17’1.02"N 92°46’28.88"E</td>
<td>2517 ft</td>
<td>22 - 34°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>S7</td>
<td>23°16’28.19"N 92°46’19.20"E</td>
<td>2464 ft</td>
<td>29 - 32°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>S8</td>
<td>23°17’26.77"N 92°46’19.88"E</td>
<td>2726 ft</td>
<td>30 - 32°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S9</td>
<td>23°16’53.93"N 92°46’42.42"E</td>
<td>2603 ft</td>
<td>24 - 33°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>S10</td>
<td>23°17’10.33"N 92°46’15.40"E</td>
<td>2563 ft</td>
<td>25 - 36°C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Mw Wangani et al., 2010) including use of fertilizers (Darriet et al., 2012) and inter or intra-specific competition (Schneider et al., 2000; Knight et al., 2004).

A total of 218 malaria cases were reported in Community Health Centre, Thenzawl, within 2009 – 2011 and P. falciparum was more prevalent (80.7%) than P. vivax (18.3%), with few mixed infections (0.92%). The monthly abundance and bionomics of An. campestris (NSK01), An. maculatus (NSK04), An. jeyporiensis (NSK09) and An. nivipes (NSK10) species in Thenzawl may have implications to malarial cases and be responsible for malarial transmission in Thenzawl. It was also noted that some Anopheles species have tendency to rest in animal shelters after feeding on human (Basseri et al., 2010), as some species described (such as An. annularis and An. sinensis) in the study, did not show their role in malaria transmission because of their zoophilic behavior (Manguin et al., 2008). The vector potential of An. campestris (Limrat et al., 2001) and An. maculatus (Rongnoparut et al., 1996) in Thailand; An. nivipes in North East India (Prakash et al., 2005) has been reported.

In the present study, monthly proportion of total adult Anopheles collected gradually increased from February (2.8%), attained its maximum by May – June (23.1%) and gradually decreased by November (0.85%). Incubation of the malaria parasite fluctuates with temperature and it generally takes 9 to 30 days to infect (Paaijmans et al., 2011), which relates to the Anopheles species abundance in June and surge of malaria during July in Thenzawl.

Acknowledgments

The authors thank CSIR, New Delhi (No. 37 (1362)/09/EMR-II dt 3 March 2009) and Directorate of Health Services, Government of Mizoram, Mizoram (D 12030/1/2003 – DHS (M)/21 dt. 06 March 2009) for supporting research projects related to mosquito work. We thank Dr. Christopher Lalmiingthanga, Chief Medical Officer, Community Health Centre (CHC), Thenzawl, Mizoram for help in data collection regarding malarial cases.

References

Darriet, F., M. Rossignol and F. Chandre: The combination of NPK fertilizer and deltamethrin insecticide favors the proliferation of pyrethroid-resistant Anopheles gambiae (Diptera: Culicidae). Parasite, 19, 159-64 (2012).

Distribution and ecology of Anophelines

