Survival and growth of *Cochlodinium polykrikoides* red tide after addition of yellow loess

Young Sik Lee, Jung Dong Kim, Woel Ae Lim and Sam Geun Lee

1Aquaculture Environment Institute, NFRDI, 361 Yongun-ri Sanyang-up Tongyeong-city Kyungnam, 650-943, Korea
2Gyeong Sang National University, 445 Inpyeong-dong Tongyeong-city Kyungnam, 650-943, Korea

(Received: February 02, 2008; Revised received: April 23, 2008; Accepted: August 10, 2008)

Abstract: We examined the survival rate of *Cochlodinium polykrikoides* after yellow loess addition and conducted culture experiments to investigate the possibility that red tides may be caused by *C. polykrikoides* individuals that are precipitated when loess is added. At least 15% of the *C. polykrikoides* cells that precipitated to the bottom layer either by the addition of loess or no addition survived for 1 week at all growth phases, rather than disappearing immediately after precipitating. However, no live cells were observed after 20 days, regardless of phase or loess addition. In the exponential phase, the number of *C. polykrikoides* cells increased to >2886 cells ml⁻¹ after loess was added. However, in the stationary phase, the number of cells did not increase until 18 days. In the exponential phase, those *C. polykrikoides* that survived precipitation caused by scattering loess on cultures did not appear to have the ability to cause red tides again because of the short red tide periods in the field, long lag time after loess addition, and low survival rate after loess addition.

Key words: *Cochlodinium polykrikoides*, Growth yield, Red tide, Survival rate, Yellow loess

PDF of full length paper is available online

Introduction

In Korea, *Cochlodinium polykrikoides* has been one of the most frequently occurring harmful red tide species responsible for fish kills since 1995 (Kim et al., 2007; Lee, 2006). Consequently, numerous studies have examined the mechanism of *C. polykrikoides* red tide formation during the last decade (Kim, 2003; Kim et al., 2004, 2007; Lee, 2006; Lee and Lee, 2006; Lim et al., 2002; Park et al., 2005). However, in 2005 and 2006, there were few red tides and relatively few fish were killed. Therefore, in 2007, the scale of economic loss resulting from red tides was expected to be low. However, widespread red tides occurred, and the economic loss caused by these *C. polykrikoides* blooms was over US$10.2 million. Therefore, *C. polykrikoides* is once again becoming an important economic and social problem.

The use of yellow loess to precipitate *C. polykrikoides* algal cells from seawater into bottom sediments is a promising strategy for treating blooms (Sun et al., 2004). Yellow loess is abundant in Korea and available for bloom treatment. Subsequently, the Korean government has used loess to minimize the economic loss caused by *C. polykrikoides* blooms each year.

Over the last 10 years, a number of studies have examined the relationship between *C. polykrikoides* red tides and yellow loess (Choi et al., 1998; Lee et al., 2004; Lee et al., 2008; Sun et al., 2004). However, most have focused on the efficiency of yellow loess for the removal of *C. polykrikoides* to prevent red tides; none has examined the survival or growth of *C. polykrikoides* after the addition of yellow loess. Therefore, many questions remain, such as whether the *C. polykrikoides* that has settled in the bottom layer can later move to the surface layer and cause another red tide. It is difficult to determine the precise effects of yellow loess on *C. polykrikoides* without such information.

In this study, we conducted culture experiments to observe the possibility of red tides caused by *C. polykrikoides* organisms precipitated by loess addition. We also examined the variation in algal cell density after yellow loess addition.

Materials and Methods

The strain of *C. polykrikoides* used in this experiment was isolated from coastal seawater off Naro Island in the South Sea of Korea during the summer of 2002. Stock cultures were maintained with f/2 medium using surface seawater taken from the South Sea of Korea. The following experiments were conducted using the same surface seawater. Cultures were maintained at 23 ± 2°C with fluorescent illumination of 140 ± 10 μmol m⁻² s⁻¹ on a 12-hr light–12-hr dark cycle (Lee, 2006; Lee and Lee, 2006). The culture vessels were 50-ml sterilized polystyrene flasks (Nunclon Delta, Naperville, IL, USA) containing 20 ml of f2 medium.

Yellow loess that had been used to control *C. polykrikoides* red tide in summer 2007 in Tongyeong, Korea, was dried at 60°C for 2 days and mixed. Particles smaller than 63 μm were used for these experiments (Lee et al., 2008). Lag, exponential, and stationary phases of *C. polykrikoides* were used to observe the survival rates of each growth stage after the addition of yellow loess (Fig. 1). Growth was monitored with a PHYTO-PAM chlorophyll a fluorometer (Heinz Walz, Effeltrich, Germany) as per the method used by Schreiber et al., 2002. For survival experiments, the *C. polykrikoides* with yellow loess was stored in a culture room (23 ± 2°C) under fluorescent illumination (10 ± 2 μmol m⁻² s⁻¹) on a 12-hr light–12-hr dark cycle, which is...
considered the same illumination as that at a depth of 10 m. Live C. polykrikoides cells were examined using an optical microscope (BX 50; Olympus, Tokyo, Japan).

To observe whether C. polykrikoides that precipitated to the bottom after yellow loess addition would grow, culture experiments were conducted using precipitated C. polykrikoides. For this experiment, we used exponential and stationary phase C. polykrikoides after 7 and 8 days, respectively, with the addition of yellow loess (2000 µg l⁻¹) or without it (0 µg l⁻¹), under low fluorescent illumination (10 ± 2 µmol m⁻² s⁻¹) because live cell densities of C. polykrikoides were very low after 7-8 days. The controls were cultures from the same phase that were not exposed to loess or low fluorescent illumination. Growth was monitored by cell density under a BX 50 Olympus optical microscope.

Results and Discussion

Survival rate of C. polykrikoides after the addition of yellow loess: Fig. 2 shows the number of live C. polykrikoides cells after the addition of yellow loess during the lag, exponential, and stationary phases. During the lag phase, cell density without yellow loess increased to 666 cells ml⁻¹ after 1 day, and 153 and 44 cells ml⁻¹ were observed after 7 and 14 days, respectively. Seven days after the addition of 100, 1000, or 2000 µg l⁻¹ yellow loess, 123, 73, and 53 cells ml⁻¹, respectively, were observed. After 14 days, cell density was >4 cells ml⁻¹. Despite the addition of 2000 µg l⁻¹ yellow loess, 15% of C. polykrikoides cells survived for 7 days.

During the exponential phase, cell density after 1-3 days increased slightly with or without the addition of 100 µg l⁻¹ yellow loess. After 7 days, cell density was 373 or 173 cells ml⁻¹ with or without the addition of 100 µg l⁻¹ yellow loess, respectively. Cell density decreased from the first day onward after the addition of 1000 or 2000 µg l⁻¹ of loess. After 7 days, cell density was 360 and 253 cells ml⁻¹, respectively, more than 15% of the initial cell density.

During the stationary phase, the variation in the number of surviving C. polykrikoides cells was similar to that during the exponential phase. In the 0-2000 µg l⁻¹ loess treatment, cell density increased slightly after 1 day. After 6 days, cell density decreased, and after 8 days, 173-360 cells ml⁻¹ were observed, representing about 15% of the initial cell density, as in the exponential phase. As mentioned above, most studies have focused on the precipitation rate of C. polykrikoides cells on adding yellow loess (Choi et al., 1998; Lee et al., 2004, 2008; Sun et al., 2004), while no study has examined the survival rate of these cells precipitated to the bottom layer by yellow loess. In addition, why did only about 15% of the C. polykrikoides cells that were precipitated to the bottom layer live for around 1 week, despite being in the same growth phase? At present, we have no answer for these questions and need further study to explain these phenomena.

In conclusion, at least 15% of the C. polykrikoides cells that were precipitated to the bottom layer by either loess addition or no addition lived for 1 week at all phases, rather than disappearing.
Growth of *Cochlodinium polykrikoides* after the addition of loess

immediately after precipitating. Regardless of phase or loess addition, no live cells were observed after 20 days. Therefore, *C. polykrikoides* cells that precipitated to the bottom layer most likely disappeared because they lacked light and nutrients rather than from damage due to the loess addition.

Growth rate of *C. polykrikoides* precipitated to the bottom layer by yellow loess: Fig. 3 shows the growth curves of cultured *C. polykrikoides* cells in f/2 medium using exponential and stationary phase *C. polykrikoides* 7 and 8 days after loess addition, respectively. In the exponential phase, the maximum growth of *C. polykrikoides* not exposed to loess was observed after 8 days. There was almost no variation in cell density for 11 days either with the addition of loess (2000 µg l¹) or without it (0 µg l¹). Cell density then increased, and at 26 days, the numbers of cells had increased to 2866 and 3366 cells ml⁻¹ with or without the loess addition, respectively.

During the stationary phase, the density of *C. polykrikoides* that were not exposed to low fluorescent illumination or loess (control) began to increase after 3 days; a density of 4030 cells ml⁻¹ was observed after 18 days. The density of *C. polykrikoides* that were not exposed to loess (0 µg l⁻¹) and exposed to loess (2000 µg l⁻¹) for 7 days did not increase. When the initial density is low (<20 cells ml⁻¹; Kim et al., 2004; Lee, 2008a, b), a culture time of at least 14 days is needed to identify whether *C. polykrikoides* has grown. In this experiment, the initial density of *C. polykrikoides* was 20 or 40 cells ml⁻¹ in the 0 or 2000 µg l⁻¹ loess treatments, respectively, and the cells disappeared after 18 days at the stationary phase. As these initial cell densities were >20 cells ml⁻¹, a low cell density does not appear to be the reason that the cells did not grow. Most culture experiments have used the exponential phase of *C. polykrikoides*, not the stationary phase (Yamatogi et al., 2005). Therefore, the reason that the cells in the exponential phase grew while those in the stationary phase did not, despite being at the same initial cell densities, seems to be the activity of *C. polykrikoides* cells.

During the exponential and stationary phases, a stock culture of *C. polykrikoides* that was not exposed to loess but grown under light was used as the control. Except for the addition of loess and the light condition, the conditions were the same among the treatment groups. In the controls, cell growth was measured from 1 and 3 days after inoculation. However, without loess, cells in the exponential phase (exponential phase, 0 µg l⁻¹) grew after 14 days and cells in the stationary phase (stationary phase, 0 µg l⁻¹) did not grow until 18 days. Therefore, extended low light conditions at the bottom layer appear to inhibit the activity of *C. polykrikoides* cells.

During the exponential phase, *C. polykrikoides* growth was observed after 14 days, and cell densities over 2886 cells ml⁻¹ were observed after 26 days with or without the addition of 2000 µg l⁻¹ loess. However, during the stationary phase, growth was not observed either with or without the 2000 µg l⁻¹ loess treatment. Also, based on microscopy, the external morphology of the cells in the two phases was similar (Lee and Lee, 2006). Therefore, loess addition seems to precipitate *C. polykrikoides*, but does not control its growth through morphological damage.

In this study, *C. polykrikoides* in the exponential phase that were precipitated by loess addition grew after 14 days of incubation but needed light to resume growth. According to Oh et al. (2006), the depth of compensation photon flux density is 15.4 m, and the depth of the areas where loess is scattered in the sea in South Korea is 7 m. Therefore, light does not limit the growth of *C. polykrikoides* in those areas. However, many of the *C. polykrikoides* that are precipitated are buried under loess or inhibited by the low light conditions (Fig. 2). Moreover, *C. polykrikoides* require a 14-days lag period to resume growth (Fig. 3). In South Korea, red tides caused by *C. polykrikoides* occur from August to October and generally last 2 weeks, suggesting that the appropriate growth conditions (e.g., water temperature, salinity, light, and nutrients) for *C. polykrikoides* are formed only during those 2-week periods on average. This is a short window for the formation of a *C. polykrikoides* bloom, and we found that *C. polykrikoides* precipitated by loess require a 14-days lag time to resume growth. Therefore, *C. polykrikoides* that are precipitated by scattering loess do not appear to have the ability to cause additional red tides.
Acknowledgments

This work was funded by a grant from the National Fisheries Research and Development Institute (RP-2008-ME-022).

References

