Accumulation of chromium and interaction with other elements in *Chlorella vulgaris* (Cloroficeae) and *Daphnia magna* (Crustacea, Cladocera)

L. Regaldo¹, A.M. Gagneten¹ and H. Troiani²

¹Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Ciudad Universitaria, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
²Centro Atómico Bariloche, Avenida, Bustillo Km 9.5, 8400 S.C. de Bariloche, Río Negro, Argentina

(Received: September 14, 2007; Revised received: January 28, 2008; Accepted: February 10, 2008)

Abstract: Assays with *Chlorella vulgaris* Beijerinck Novakova, 1890 and *Daphnia magna* Straus, 1820 were performed to determine Cr and other elements concentration in tissues of both species by instrumental neutron activation analysis (INAA), after being exposed to 150, 280 and 350 µg l⁻¹ Cr (VI). Interaction among Cu, Zn, Fe and Cr were also registered. In the control of *C. vulgaris*, the amount of Cr was < 4 µg g⁻¹; in the treatments with Cr (VI) the values were 47, 82 and 100 folds greater than the control for the lowest, intermediate and highest concentrations tested respectively. In the control of *D. magna*, the amount of Cr was < 3 µg g⁻¹; in the treatments with Cr (VI) the values were 14, 13 and 27 folds higher than the control for the lower, intermediate and higher Cr (VI) concentrations respectively, and from 3 to 9 times less than for *C. vulgaris*. These results show that *C. vulgaris* is very efficient accumulator of Cr (VI) from polluted waters, and in consequence, it is proposed to be used in phytoremediation procedures.

Key words: Chromium, Bioaccumulation, Oligoelements, *Chlorella vulgaris*, *Daphnia magna*, INAA

PDF of full length paper is available with author (*amgagneten@gmail.com*)

Introduction

Heavy metals are considered as extremely toxic contaminants when present in aquatic systems. The most studied heavy metals in ecotoxicology are Hg, As, Cr, Pb, Cd, Ni and Zn. Chromium is an important contaminant because it is widely used in the process of leather tanning. Chromium is also used in the stainless steel production and in the manufacture of glass, electroplating, pigments, fungicides and batteries (Rinderhagen et al., 2000). Ions of heavy metals usually enter the cells through the same transport channels used by physiological important cations e.g. Ca, Mg, Cu and Zn (Luoma and Rainbow, 2006). They interfere with physiological activities such as photosynthesis, gaseous exchange and nutrient absorption, and cause reduction in plant growth, dry matter accumulation and yield (Rajesh and Madhoolika, 2005; Sahu et al., 2007).

In the trophic chain, photosynthesizing organisms constitute the main access routes for heavy metals to consumers organisms (Moreno Sanchez and Devans, 1999). Zooplankton plays a key role in aquatic systems because its main food source are microalgae and particulated organic matter. On the other hand, it is ingested by larvae and juvenile fishes (Escalante, 1982, 1983) participating, in this way, in the transference of heavy metals from producers to superior trophic levels.

The great surface of exposure of planktonic organisms per mass unit, together with their high renewal rates, determine a rapid adsorption and absorption of several contaminants. The fraction of zooplankton which feeds through filtration accumulates many metals and other contaminants diluted in water or associated with bacteria, algae and particulated organic matter. In this sense, the quantification of toxic elements is very important in order to investigate the uptake and transfer along the trophic chain and to monitor the levels of contamination of different aquatic environments (Ravera, 2001).

The small size or zooplanktonic organisms are the most important constraint to carry out bioaccumulation analysis. However, the Instrumental neutron activation analysis (INAA) overcomes this limitation, because this technique analyze very small amounts of biomass. It can determine simultaneously the concentration of several elements and is a very selective and precise method (Langstrom and Spence, 1994). Although Cr (VI) removal by some algae have been recently studied (Baran et al., 2005; Ruangsomboon et al., 2008), surveys on accumulation of heavy metals in plankton by INAA are very scarce. Campanella et al. (1999), analyzed macrominerals and trace elements of *Spirulina platensis* by INAA and Mosulishvili et al. (2004) applied the epithelial neutron activation analysis to investigate accumulation and adsorption of mercury by *S. platensis*, showing that this species has potential to be used in the remediation of sewage waters at Hg concentrations ~100 µg l⁻¹.

The aim of this work was to study the potential of planktonic organisms belonging to two trophic levels as Cr accumulators, to compare the bioconcentration of Cr and other elements in tissues of *C. vulgaris* and *D. magna* and to analyze interaction between Cr and other oligoelements by INAA in both organisms after being exposed to three Cr (VI) concentrations.
Materials and Methods

We measured the concentration of Cr (VI) in the tissues of C. vulgaris and D. magna and the concentration of Cr remaining in the culture medium. We also analyzed possible interactions between Cr and other oligoelements.

Both species were exposed by triplicate to a control (without Cr (VI), T0) and three different Cr (VI) concentrations: 150, 280 and 350 µg l⁻¹ (T1, T2 and T3 respectively). Cr was added as K₂Cr₂O₇. The concentrations were selected according to Kungolos and Áoyama (1993) and Gagneten (2006).

C. vulgaris was cultured according to Borowitzka (1988). Algae were exposed to the three mentioned Cr (VI) concentrations and three controls for 24 hr. Each replica consisted of beakers with 300 ml Cr (VI) solution and C. vulgaris suspension (absorbance=1.5 at 650 nm). After homogenization, the vessels were transferred to a culture chamber with constant temperature and photoperiod (20 ± 1°C; 16 hr light; 8 hr dark). Afterwards, they were centrifuged (6,000 rpm) to separate the culture medium. Prior to Cu, Zn, Fe, Cr, Ag and Br determination by INAA, algae samples were dried at 35°C to constant weight. For each replica 144.8 ± 21.4 mg dry weight (d.wt.).

Adult organisms of D. magna were exposed to identical Cr (VI) concentrations and three controls for 48 hr. Each replica consisted of 50 adult D. magna per test chamber (beakers of 500 ml) randomly separated. Sorted adults were acclimatized to culture medium (2 g NaHCO₃; 2.24 g CaCl₂; 0.26 g K₂SO₄ in 10 l distilled water; conductivity: 0.05 mS cm⁻¹; dissolved oxygen: 7.8 mg l⁻¹; pH: 7.6); temperature and photoperiod were constant (20 ± 1°C; 16 hr light; 8 hr dark). Animals were fed 24 hr before the exposition to Cr (VI) but no food was given to the test organisms during the experiment.

After 48 hr, animals were carefully washed twice with distilled water, frozen and dried at 60°C up to constant weight, to latter determine by INAA the amount of Zn, Fe, Cr, Ag and Br absorbed; 1.86 ± 0.9 mg d.wt. D. magna were obtained for each replica.

Cr, Ag, Br: Cr and other oligoelements (Cu, Zn, Fe, Cr, Ag, Br) concentrations in tissues of C. vulgaris and D. magna were determined by INAA. For this analysis, a RA6 reactor placed in Laboratories of the Bariloche Atomic Center (CAB) at the Atomic Energy National Comission (CNEA) has been used. Samples were irradiated, together with standard reference material. Scenedesmus obliquus 208 (IAEA-392, 2005) in order to improve the precision of the analysis. After irradiation, γ-spectrometry measurements at proper times were carried out using a solid state HPGe type N detector equipped with a suitable software program.

Remaining concentration of Cr in C. vulgaris and D. magna culture medium was determined by atomic absorption spectrophotometry (Perkin Elmer 403). According to ASTM (2003) Standards – Water and Environmental Technology, chromium concentrations were determined in Centralized Service of Great Instruments (CERIDE-CONICET), Laboratory in the Proficiency Testing Program Canadian Association for Environmental Analytical Laboratories (CAEL).

The concentration of heavy metals in both organisms were tested with the nonparametric Kruskal-Wallis test to check for significant differences between treatments (p < 0.05).

Results and Discussion

In C. vulgaris, the concentration of Cr in the control was < 4 µg g⁻¹ d.wt. In the treatments with Cr (VI), the concentrations were 148.3, 330.3 and 399.6 µg g⁻¹ d.wt. for T1, T2 and T3 respectively (Table 1 and Fig.1). In D. magna, the amount of Cr was < 3 µg g⁻¹ d.wt. in T0; in the treatments with Cr (VI), the concentrations were 42.3, 40.4 and 82.3 µg g⁻¹ d.wt., for T1, T2 and T3 respectively (Table 1 and Fig. 2) showing that algae absorbed a greater amount of Cr than cladocerans.

When C. vulgaris was exposed to Cr (VI), the concentration were 47: 82 and 100 g-values greater than the control for T1, T2 and T3 respectively. In D. magna, the values were 14, 13 and 27 folds higher than the control for the lower, intermediate and highest concentrations tested respectively, and 3 to 9 times less than for C. vulgaris.

The remaining Cr concentration in the culture medium after the exposure of algae was < 50 µg l⁻¹ in all the treatments. C. vulgaris accumulated 66.7, 82.2 and 85.8% Cr for T1, T2 and T3 respectively (Fig. 3), while D. magna accumulated only 3% in T3 and the half of this, in T1 and T2 (Fig. 4). These results show that D. magna is not a very active accumulator of Cr, at least for the Cr (VI) concentrations tested.

Yan and Pan (2002) reported that Chlorella pyrenoidosa, Closterium lunula and Scenedesmus obliquus accumulated 95, 79 and 67% respectively after exposure to 50 g l⁻¹ Cu. The Cu concentration accumulated reached a maximum value after the first day of exposure. Moreover, they found that C. pyrenoidosa, the smallest of the species tested, accumulated more Cu probably because they had more binding sites available for the union with metals. These results are in accordance with the obtained in the present study with C. vulgaris after 24 hr of Cr (VI) exposure. The amount of remanent Cr in the growing media was lower than 50 µg l⁻¹, even for the treatment with the higher Cr (VI) addition. This result confirms that C. vulgaris is an extremely efficient bioaccumulator. Other algae species were found suitable for removing Cr from aqueous solution, as was showed by Baran et al. (2005). According to Hooda (2007), phytoremediation is an emerging technology, which uses plants and microorganisms to remove pollutants from contaminated sites. Despite several advantages, phytoremediation has not yet become a commercially available technology.

In contrast, the difference between the amount of Cr recorded before and after growing D. magna in the culture medium was very low. This fact demonstrates that, even considering that D. magna constitutes an excellent test organism to determine if a specific media is toxic or not, it accumulates significantly lower amounts of Cr than C. vulgaris (p<0.05). However, the fact that D. magna accumulated Cr means that at least part of it was bioavailable.

In C. vulgaris exposed to Cr (VI) (Fig. 1), Cu and Zn augmented for increasing Cr concentrations. This would indicate that
Accumulation of chromium in Chlorella and Daphnia

Table 1: Cr and other elements concentrations recorded in C. vulgaris and D. magna tissues after exposure to the three Cr (VI) concentrations tested: Control (T0), 150 (T1), 280 (T2) and 350 µg L⁻¹ (T3)

<table>
<thead>
<tr>
<th></th>
<th>Cr (µg g⁻¹ d.wt.)</th>
<th>Cu (µg g⁻¹ d.wt.)</th>
<th>Zn (µg g⁻¹ d.wt.)</th>
<th>Fe (µg g⁻¹ d.wt.)</th>
<th>Cr (µg g⁻¹ d.wt.)</th>
<th>Ag (µg g⁻¹ d.wt.)</th>
<th>Br (µg g⁻¹ d.wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorella vulgaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (T0)</td>
<td>670</td>
<td>252</td>
<td>2230</td>
<td>< 4</td>
<td>3.23</td>
<td>0.361</td>
<td></td>
</tr>
<tr>
<td>150 (T1)</td>
<td>914.6 (220.2)</td>
<td>304.3 (44.7)</td>
<td>3180 (12375)</td>
<td>148.3 (0.5)*</td>
<td>2.64</td>
<td>0.53 (0.03)</td>
<td></td>
</tr>
<tr>
<td>280 (T2)</td>
<td>943.3 (153.0)</td>
<td>320.3 (34.0)</td>
<td>2890 (477.9)</td>
<td>330.3 (5.0)*</td>
<td>2.37 (1.0)</td>
<td>0.51 (0.1)</td>
<td></td>
</tr>
<tr>
<td>350 (T3)</td>
<td>1003.3 (140.1)*</td>
<td>798.3 (380.5)*</td>
<td>1706.6 (714.7)</td>
<td>399.6 (47.0)*</td>
<td>3.0 (0)</td>
<td>0.35 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Daphnia magna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (T0)</td>
<td>nd</td>
<td>178 (24.1)</td>
<td>422 (147.9)</td>
<td><3.0 (0.9)</td>
<td>13.26 (19.3)</td>
<td>33.5 (9.6)</td>
<td></td>
</tr>
<tr>
<td>150 (T1)</td>
<td>nd</td>
<td>195 (61.5)</td>
<td>301 (60.6)</td>
<td>42.3 (13.0)*</td>
<td>13.54 (21.4)</td>
<td>28.7 (12.2)</td>
<td></td>
</tr>
<tr>
<td>280 (T2)</td>
<td>nd</td>
<td>175 (48.5)</td>
<td>289 (138.6)</td>
<td>40.4 (11.3)*</td>
<td>3.40 (1.1)</td>
<td>17.4 (6.3)</td>
<td></td>
</tr>
<tr>
<td>350 (T3)</td>
<td>nd</td>
<td>168 (50.6)</td>
<td>249 (173.4)</td>
<td>82.3 (19.4)*</td>
<td>0.889 (1.1)</td>
<td>16.2 (3.6)</td>
<td></td>
</tr>
</tbody>
</table>

The values correspond to the media and 1 standard error. (*) Significant differences between control and exposures (p<0.05) (n=3), d.wt. = Dry weight

A possible cause of the little amount of Cr recorded in D. magna is that microcrustaceans accumulate some pollutants in their exoskeleton but molting releases them: as a result, crustaceans are periodically detoxified by molting, which occurs several times during their lifespan. In this sense, after a few days of exposure, Robinson et al. (2003) found that D. magna rapidly accumulated Cd on their carapaces, but it dropped drastically after ecdisis. Another cause that could influence the low Cr accumulation by D. magna is the high alkalinity and water hardness of the culture medium. Janssen et al. (2003) suggest that the competition between Ca, Mg, Na and metal ions, results in decreasing toxicity to the organisms tested. In this sense, Karthikeyan et al. (2007) reported that Ni accumulation by C. vulgaris was significantly influenced by pH water.

Other elements (mainly Zn and Cu) varied in C. vulgaris tissues in relation to the control when exposed to different Cr (VI) concentrations, indicating the influence of Cr on the amount of other oligoelements, and probably showing an interaction with them. Control values showed that Cr, Ag and Br were the elements less abundant in C. vulgaris and D. magna, while Fe, Cu and Zn were the most abundant.

Previous work developed by Luoma and Rainbow (2006), showed that the union of a metal to the surface of a cell membrane may induce a direct biological response or, alternatively, it may go through the membrane and join intracellularly the target site. A variation could be the competition of the metal for a transportation system used as an essential micronutrient. As a consequence, the union of the metal to the site in the surface would inhibit its supply.
There are many variables that influence the bioconcentration of a specific toxic, such as the contaminant concentration in water, the physico-chemical form of the contaminant, the permeability of the membrane, the type and amount of food, its degree of contamination and the features of the physical and chemical environment. All these factors influence both the organism and the contaminant (Rinderhagen et al., 2000).

The relevance of the present work stands out in the simultaneous examination of many elements in organisms with scarce biomass belonging to two trophic levels with INAA and their interaction with Cr, a heavy metal poorly studied. We also propose C. vulgaris for future phytoremediation research.

Acknowledgments
This survey was supported by grants from the Universidad Nacional del Litoral, Santa Fe, Argentina (Proyect CAH+D No 21/122). The authors thank Maria Arribere for helpful INAA analysis.

References